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Abstract—We study the impact of capturing spatiotemporal
correlations between multiple supply points on economic dispatch
procedures. Using a simple dispatch model we first show analyt-
ically that over/underestimation of correlation leads to positive
and negative biases of dispatch cost. A rigorous, large-scale
computational study for the State of Illinois transmission grid with
real topology and physical constraints reveals similar conclusions.
For this study, we use the Rao-Blackwell-Ledoit-Wolf estimator
to approximate the wind covariance matrix from a small number
of wind samples generated with the numerical weather prediction
model WRF and we use the covariance information to generate a
large number of wind scenarios. The resulting stochastic dispatch
problems are solved using the interior-point solver PIPS-IPM
on the BlueGene/Q (Mira) supercomputer at Argonne National
Laboratory. Our results indicate that strong and persistent biases
result from neglecting correlation information and points to the
need to design a market that coordinates forecasts and uncertainty
information.

Index Terms—covariance, correlation, spatiotemporal, estima-
tion, uncertainty, wind power, dispatch
NOMENCLATURE

Wind Forecast
¥ Ensemble inflation factor

Dispatch
N set of nodes
g set of suppliers
U feasible set for flows
C; feasible set for supplier %
Q set of scenarios
T forward dispatch quantity for supplier ¢
Xi(w) spot dispatch quantity for supplier ¢ in sce-

nario w
f forward flow vector
F(w) spot flow vector in scenario w
i cost for supplier ¢
p;" additional supply cost for supplier i
D; buyback cost for supplier ¢
dy, demand at node n
Tn () injection function for node n
M; supply limit for deterministic supplier ¢
Wi (w) supply limit for stochastic supplier 4 in sce-

nario w

I. INTRODUCTION

Achieving efficient grid operations under large-scale wind and
solar power is a challenge because these supply sources follow
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complex spatiotemporal patterns (see Figure fig:corrwind) that
extend over wide geographical regions (e.g., tens to hundreds
of kilometers) and long periods of time (i.e., hours to days).
Because of this, reserve allocation procedures can be ineffective
and more adaptive and systematic approaches based on stochas-
tic and robust optimization techniques are needed.

Stochastic and robust optimization techniques rely on un-
certainty characterizations. Correlation (or covariance) informa-
tion, in particular, is key because this guides forecast aggre-
gation/disaggregation procedures and because it is needed to
characterize risk in dispatch cost and revenues of market players.
If the supply of a wind farm in a region is uncorrelated from that
in another region, these can be forecasted independently without
affecting dispatch cost. However, when correlations exist, one
would expect that using independent forecasts introduces errors
in the uncertainty characterization, and will bias dispatch cost
and will shift incentives of the players (wind power suppliers,
suppliers, and consumers). This was hypothesized in [10] (see
Section 5), however, before the present study, there was not any
evidence that this is case or how large the cost bias is.

Estimating long-range correlations is challenging from a
market implementation point of view and from a computational
point of view. From a market implementation stand-point,
determining long-range correlations is a challenge because wind
farm owners might not be willing to share their forecasting
procedures and their site information with other markets players
and the ISO. Consequently, they might prefer to construct their
own forecasts and uncertainty levels by possibly neglecting
correlations with other sites. Wind farm owners might also need
to neglect long-range correlations altogether simply because of
computational limitations faced by their forecasting vendors.
Computational challenges arise because properly resolving the
space-time resolution of numerical weather prediction (NWP)
systems requires significant computational power [3]. NWP
systems are extremely computationally intensive and few com-
puting sites exist in the world that can obtain forecasts that
accurately capture both short-range wind farm conditions and
long-range behavior. In other words, there are limits on the
resolution of uncertainty characterizations achievable and this
leads to ambiguity. Note also that keeping forecasting informa-
tion confidential provides a mechanism for manipulation (e.g.,
a supplier overestimates its uncertainty).

Properly designing decentralized markets that factor in un-
certainty in weather-driven supply is necessary but this requires
significantly more complex information exchange mechanisms
between the ISO and market players compared to existing
deterministic settings [10], [17]. To design such information
exchange mechanisms, it is necessary to understand the effects
that certain pieces of information have on market performance.
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Fig. 1. Spatial correlation for wind speed in State of Illinois.

In this work, we study the particular effect of long-range
correlation information on dispatch cost. We first present an
analytic example to prove that correlation between suppliers
output can positively or negatively bias dispatch cost (depending
on the correlation direction). Second, we perform a detailed
computational study using a stochastic economic dispatch set-
ting in the Illinois transmission system. We use validated wind
speed ensemble forecasts obtained with the NWP system WRF
that are propagated through typical wind power curves to obtain
wind power ensembles. We use the Rao-Blackwell-Ledoit-Wolf
estimator to generate scenarios from the limited number of
WRF samples available and demonstrate the efficacy of this
estimator. Our computation study reveals that: i) dispatch cost
biases that would scale up (if similar correlation patterns across
the year hold) to order of hundreds of millions of dollars a
year can be introduced by ignoring long-range correlation and
ii) that confidence levels of dispatch cost are different from
the actual ones when correlations are neglected. In our study,
the confidence intervals when ignoring correlations were wider
thus requiring many more scenarios to close the gap compared
to the correlation-based approach. Our study thus indicates that,
as hypothesized in [10], centralized forecasts that can properly
account for correlations are superior to localized ones when used
for constructing wind power bids by suppliers in markets with
signficant wind power penetration.

II. A MOTIVATING ANALYTICAL EXAMPLE

Consider a single-node system with three suppliers and one
demand. The first two suppliers, G; and G, are considered
to have uncertain power output. Assume that the power outputs
for these suppliers follow Gaussian distributions, A (w1, o1) and
N (ws,02), and define p € [—1,1] as the correlation coefficient.
Assume also that both supply power at cost p,. The third
supplier G5 is assumed to be deterministic; this supplies power
at cost pyp, with py, > p,, and has infinite capacity. The demand
quantity is defined as d and we assume this to be deterministic
and inelastic.

By construction, it can be deduced that as much cheaper
power as possible should be produced. In case this does not

satisfy all demand, then G35 will be dispatched to fulfill the
remaining demand. Consequently, the negative dispatch cost is

cq = E [pp min(X; + X, d) + pyp, max(d — X7 — Xo,0)].
(IL1)
To show the dependence c; = cq4(p) we write (IL.1) as follows:
cq = E [pwd 4+ pp min(X; + X5 — d,0)
+pip max(d — Xy — X»,0)]
= pwd + E [—p,, max(d — X1 — X5,0)
+pip, max(d — Xq — X3,0)]
= pwd + E [(pth — pw) max(d — X1 — X3,0)]
= Pud + (prn — pw)E[d — (X1 + X) [ Xy + X5 < C(?I.Z)

Here, E[X|Y] denotes the expectation of X conditional on event
Y. Furthermore, since the random variable X = X; + X5 is
normally distributed, X ~ N (u, o), where

o=oa(p)

= /0% + 2po102 + 03 and p = w1 + wa, (IL.3)

cq can be expressed

cqd = pwd + (Pt — pw)E[d — X|X < d]
)

= pwd + (Pth — Pw) (d,0) — (ptn — Pw)E [X|X < d],
(IL.4)

where @ is the cumulative density function of X,

O(z,0) = % [1+erf<”i/_§:ﬂ .

Also let us denote the probability density function of Y by
2
¢(z,0) = 5—exp (— o) ) It can be shown (see Lemma 1

from the Appendix) that
E[X|X <d] = —0?¢(d,0) + n®(d,0).

(L5)

(IL6)

Combining this equation with (II.4), the dispatch cost is

ca(0) = puwd + (pth — Pw) ((d —we(d,o)+ U2¢(d7 U)) :
L7

The dependence of the dispatch cost ¢4 on the correlation
parameter p becomes clear an is illustrated in Figure 7. We
also have the following result:

Proposition 1: The dispatch cost c4(p) is a strictly increasing
function of the correlation parameter p.
Proof: See Appendix A.

This result shows that there can be a positive or negative bias
(depending on the correlation direction) between dispatch cost
values computed from different correlation structures (different
uncertainty characterizations). This can be interpreted as a
dispatch cost bias introduced by an error in the correlation coef-
ficient resulting from computational or market implementation
limitations.

With increasing p, the probability distribution of the total
available wind X = X; + X5 becomes “taller” (see (II.3)),
and, as a consequence, it is less likely to satisfy demand using
the cheap uncertain supply and more probable to dispatch the
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Fig. 2. Dispatch cost ¢4 as a function of demand d for negative correlation
(p = —1), no correlation (p = 0) and positive correlation (p = 1).

more expensive supply and this results in a higher cost. For
instance, if two suppliers are fully positively correlated (p = 1),
a low output of one will result in a low output of the other. In
the extreme case of full negative correlation (p = —1) cheap
uncertain supply will most likely be used because if the output
of of one wind farm drops then this implies that the output of the
other one increases so there is always at least one active wind
farm. From Figure 7 note also that, at low and high demands,
correlation does not affect dispatch cost.

If analyzed from a purely dispatch cost perspective, one can
argue that an inaccurate forecasting system that overestimates
and underestimates the correlations may lead to the same
expected dispatch cost on the long run compared to that obtained
with an ideal forecasting system. While we do not refute this
possibility, we point out that inaccurate forecasting also results
in gaps in prices and revenues and, for this reason, it results in
market inefficiencies. This will bias incentives in unpredictable
ways towards certain players that might not average out in the
long run.

Errors in correlation between uncertain suppliers can occur
for a variety of reasons. For example, the owners of the wind
farms might submit their own forecasts and scenarios and the
ISO will treat them independently when dispatching. Such
a situation is discussed in [11]. Alternatively, correlations or
the covariance matrix may be poorly estimated in the NWP
systems due to the prohibitively expensive computational cost of
accurate estimators. Hence, we advocate the use of ISO-centric
weather forecasting system of atmospheric conditions while
mapping to wind power forecasts (that capture local and wind
turbine effects) can be done internally by wind farm owners
in order to prevent disclosure of information. The numerical
simulations of the next section indicate that more than $10, 000
savings per dispatch period can be obtained for full-scale power
grids, such as the one of the State of Illinois. As an estimate
of the savings over one year, it can reach a hundred millions
dollars, assuming the same amount of savings per dispatch
period as the one revealed by our simulations.

III. DETAILED COMPUTATIONAL STUDY

In this section, we present a detailed computational frame-
work to analyze the effects of correlation on dispatch cost and
prices. The different elements of the framework include i) a
stochastic dispatch model, ii) numerical weather prediction, and
iii) covariance estimation and scenario generation. Our setting
includes realistic data for the Illinois transmission system and
we assume a wind adoption scenario of 17%.

A. Stochastic Dispatch Model

In our analysis we use the stochastic dispatch model from [11]
because it captures forward and spot market components in a
realistic manner.

min

X, ,X,; (w)
> (piwi + B [0 (Xo(w) = 20)+ = p; (Xo(w) — 2:)-])
i€g

(I1L.8a)
S.t.
W)+ D wi=dn, nEN (I11.8b)

1€G(n)
Tn(F(w)) — 1 (f) + Z (Xi(w) —2;) =0, ne N,weQ
i€g(n)

(I1L.8¢)
fF(w) eU,weQ (I1L.8d)
(x5, Xi(w)) € Ci(w), i €G,weN (11.8e)

Here, N denotes the set of nodes (buses) and L the set of
transmission lines that form the power grid. The set of all
suppliers is denoted by G. Subsets G(n) denote the set of players
connected to node n. The forward dispatched quantities for
players are x; and the spot quantities under scenario w are
X, (w). The forward power flow through line ¢ € L is denoted
by f¢ and f denotes the vector of all line flows. Similarly, F'(w)
denotes the vector of line flows Fy(w) for each scenario w.
The demand is assumed to be deterministic and inelastic and
represented by d,,, n € N.

The scenarios w characterize the randomness in the model due
to unpredictable capacities and are mathematically are expressed
as random vectors defined on some probability space (€2, F, P).
The expectation E, is taken with respect to the measure P. In
practice, one considers a finite approximation of {2 obtained
through sampling.

The objective consists of minimizing the forward dispatch
cost Zieg p;x; plus the expected adjustment or recourse dis-
patch cost 3,5 Eo [pf (Xi(w) — i)+ —p; (Xi(w) — @) -]
specific to individual scenarios. Here [y]; = max{y,0} and
[y]- = max{—y,0}. The coefficients p; denote the bid price
and p; and p; are price bids for real-time corrections of the
generators. A supplier ¢ asks p;" > p; to sell additional power,
or asks p; < p; to buy power from the system (e.g., reduces
output). In our model we have used p; = 0.8p; and p;r = 1.2p;.

The decision variables are the power dispatch of each gener-
ator, x;, X;(w) and the power flows f; and F(w). The first-
stage dispatches x; are “ahead” decisions that accounts for
randomness; the second-stage re-dispatches X;(w) represent



“real time” decisions that are appropriate corrections once an
individual realization w of the randomness is observed.

Function 7,(+) is a mapping of the flow vector to the node
n. We denote by v1(n) the inflow lines into node n € N
and by vy(n) the outflow lines. Equation (II1.8b) describes the
power flow through a node n € N which is the sum of power
™ (f) = Xiev, (n) 1= 210y J1 imported via the transmission
lines to node n and power %ieg(n) x; produced at node n.
Equation (III.8c) is the second-stage correspondent of (IIL.8b),
enforcing power flow balance at each node for each scenario
w. It is shown in [11] that the multipliers associated with this
“residual” formulation (not with the simpler equivalent form,
Tn(F(W)) + 2 icg(n) Xi(w) = 0) gives the clearing prices to
be used in the spot (or real-time) market. Equation (II1.8d)
represents maximum flow constraints on individual lines, with
U being usually a polyhedron.

Equation (IIL.8e) expresses constraints on supply that come
from technological limits of the generators (such as maxi-
mum/minimum capacity, limited ramp-up/down power on short
notice) and intermittent availability of energy of some gener-
ators. In our model, C; is deterministic for thermal generators
(natural gas, coal, heater oil and nuclear) and given by C; =
{(3, X3) : 24, X; € [my, M), |x; — X;] < r;}, expressing ca-
pacity and ramp-up constraints. The uncertain output is modeled
by Ci(w) = {(z;, Xi(w)) : z; € [0, M;], X;(w) € [0, W;(w)]},
showing that the first-stage dispatch x; can be allowed to
reach maximum installed capacity and the second-stage dispatch
X;(w) can only be allowed to reach maximum power generated
under scenario w. We consider ramp constraints with only one
time step.

Our model was set up for the State of Illinois power grid
which comprises 2522 lines, 1908 buses, 870 load buses, 225
generators, of which 32 are wind farms. In order to obtain a
large wind power installed capacity (approximately 17%), we
needed to create synthetic wind farms in addition to the existing
ones. The synthetic farms were chosen to replace existing coal
or gas generators. This was done specifically to avoid possible
network congestions that would limit the amount of real wind
adoption. In addition, we replaced only thermal generators that
were mirrored by other (usually identically) generators to ensure
that enough thermal generation is available to satisfy demand
when low-wind scenarios occur. The cost per MW for the wind
farm is 5$/MW, the lowest across all generators.

B. Wind Scenario Generation

Wind direction and speed samples required for our study
are obtained from WRF. The WRF model [13] is a state-of-
the-art numerical weather prediction system designed to serve
both operational forecasting and atmospheric research needs.
WREF is the result of a multi agency and university effort to
build a highly parallelizable code that can run across scales
ranging from large-eddy to global simulations. WRF has a com-
prehensive description of the atmospheric physics that includes
cloud parameterization, land-surface models, atmosphere-ocean
coupling, and broad radiation models.

We set up a computational nested domain structure for
WREF including a high-resolution sector that covers the State
of Illinois and two additional domains of larger coverage but

lower resolution that provide boundary conditions for the nested
domains [2]. This is illustrated in Figure 4. The initial conditions
from the assimilated state (also known as reanalyzed state) of
the atmosphere are randomly perturbed and propagated in time
through the nonlinear NWP model to obtain a set of ensembles
that describe possible trajectories of the atmospheric conditions.
The computational cost of this procedure is significant. Comput-
ing a single ensemble for Illinois over a 24-hour time window
takes 6 hours of wall clock time running on 32 processors.
Because of these limitations, we computed only 30 ensembles
for June 4, 2006 in [2]. The ensembles have been validated
using weather station observations obtained from the National
Climatic Data Center (NCDC). The ensembles for six different
wind farm locations are shown in Figure .
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Fig. 3. Wind-speed realizations for 6 wind farm locations in Illinois and

observations (dots) at nearest meteorological stations. Vertical lines represent
beginning of day (12:00 AM).

Each ensemble provides the components of the wind ve-
locity which are transformed to wind speed. This gives a 3-
D field in geographical coordinates (latitude, longitude, and
elevation) evolving over time where the field points match
the discretization mesh in the inner domain. The wind farm
locations, however, do not match the discretization mesh. In
addition, the typical hub height used for wind farms (80 meters)
may also not match the WRF vertical layers. To remedy this
issue we use linear and bilinear interpolation to compute wind
speeds at the farm locations from the WRF ensembles, therefore
obtaining a set of 30 ensembles for the speeds at the desired
3-D coordinates. We then compute the sample mean X, sample
covariancAe S and the Rao-Blackwell-Ledoit-Wolf (RBLW) es-
timator X rprw as described in the next section. Using this
approach, we can compute many wind speed scenarios by
sampling a multivariate Gaussian with mean X and estimated
covariance matrix Xrprw.

Our computational framework is not restricted to the use of
WRF and RBLW covariance estimators and can accommodate
scenarios generated with different scenario generation tech-
niques for wind speed, assuming that these can handle the large
spatial coverage present in our computational study. Among
alternative scenario generation techniques we mention copula
transformation [15], [16], probabilistic models [14] and time-
recursive estimation of covariance matrix [9].

C. Covariance Estimation Methods and Validation

The simplest estimator for the covariance using the WRF
samples would be the sample covariance matrix. In our setting,
however, this matrix is rank-deficient and therefore noninvertible
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Fig. 5. Locations of wind farms (blue triangles) and meteorological stations
(red dots).

since the number of WRF samples is smaller than the number of
the wind farms. Because of this, it is not possible to factorize it
and sample from it. In addition, the sample covariance estimator
can be unreliable when few samples are available. Consequently,
we investigate the use of alternative estimators and we compare
their performance.

Mathematically, the problem of covariance estimation can be
expressed as the problem of estimating the matrix 3 € RP*P
of a random vector y € RP based on a set of realizations
or samples {x;}!,, for the case when n is smaller than p.
Let x = £ .3 x; € RP denote the sample mean and
S = % - AX - AX" ¢ RP*P denote the sample covariance
matrix, where X = [x1,X2,...X,] € RP*" and AX =
[x] —X,X9 —X,...,X, — X] € RPX™,

Covariance estimators for the case p > n make use of
regularizations of the sample covariance matrix S to overcome
the rank-deficiency. One of the most common regularizations is
the perturbation of the covariance matrix by a multiple of the
identity, which leads to shrinkage estimators of the type

3=

~

S=a-I+8-8S, (I11.9)

where I € RPXP js the identity matrix and « and [ are
regularization parameters or weights chosen to minimize the
estimation error ||X — XJ|, where || - || usually refers to the
Frobenius norm. Since ¥ is unobservable, different techniques
are used to compute statistical estimates for o and f3.
Ledoit and Wolf [4] propose the estimator 3y given by
2 2

Eay a

&

where,
m=tr(S-1)/p, d :tr([S—mI] : [S—m~I]t) /p,
(1IL.10)
tr ([x;C xh — 8] [xp - x} — S]t)
p

2
ad ’

b> =min | n7'- E

k=1
IL11)

and a? = d? — b?. Here, tr(A) denotes the trace of matrix A.

Chen et al. [1] propose a refinement of the Ledoit-Wolf esti-
mator, called tlle Rao-Blackwell Ledoit-Wolf estimator, which
we denote by Xrprw, that has better asymptotical properties
(as n — o00) than X . This is estimator is given by

Srpw = prew I+ (1 — prerw) - S, (IIL12)
where
=2 tr (S?) + tr? (S)

(n+2)- [tr(s2) - 29|

PRBLW = Min , 1] . (II.13)

A second estimator proposed in [1] is the Oracle Approx-
imating Shrinkage (OAS) estimator, which rely on a iterative
procedure to provably converge to

Soas = poas-T+ (1= poas)) S, with (IIL14)
. (1—2/p)-tr (S?) +tr?(S)
poas = M i T2/ [ (S — w2 (S) /1)

(1IL.15)

The performance of the three estimators we presented is
highly dependent on the data set. For example, in [1] Xoas
performs better than X rprw and Xy for data coming from
a fractional Brownian motion, but all three estimators perform
comparably for Gaussian AR(1) processes (for small values of
n).

We demonstrate the performance of the three estimators
using the light-weight quasi-geostrophic (QG) model, which
is representative of a realistic atmospheric or oceanic data
assimilating system [12]. We consider the QG model on the 2-
D cartesian domain Q = [0, 1] x [0, 1] estimate the covariance
between 4 x 4 grid at 40 consecutive times (p =160). The QC
model describes the motion of a fluid and is mathematically
expressed as

G =V —€- T(Wh,q) —A- A% +2-7-sin(2-7-y),
(I11.16)

where ¢ is the potential vorticity, v is the stream function, A
is the Laplacian operator, J (¥,q) = ¥y - ¢y — ¥y - ¢z is the
Jacobian and x and y are the horizontal and vertical components,
respectively. The coefficients A and e are set to 2 x 10~'2 and
A = 1075, respectively.

The model uses homogeneous boundary conditions 02 =
0vY = 0q = 0 and initial conditions of the form

Viy = sin(a+pB-4-y-x;) +cos(a+ -2y - x))
+sin(a+6-2-y;-x;) - cos(a+ 54y - zj),

(I11.17)



where (z;,y;), 1 < 4,57 < 64, are the discretization points.
Parameters « and ( describe the shift and amplitude waves,
respectively.

The samples are built by picking 4 points from the discretiza-
tion of ) at 40 consecutive times and randomly perturbing the
initial conditions using & = 1+ |u1| and 8 = po, where p1 and
po are uniformly distributed random variables, 3 ~ U(0,107%)
and ps ~ U(0,1072). Each initial condition is propagated
in time providing a sample associated with the 160 points of
interest.

The quality of the estimators is infered based on the percent-
age relative improvement in average loss norm (PRIAL) that
describes how much an estimator 3 improves the estimation of
3’ with respect to S and is defined as

(g g ElIZ-SP-E[|®- S
( Y ) Ef|% -S|
The true covariance matrix 3 is evaluated using 200 samples.
We evaluate the estimators using n = 25 and n = 40 samples
and the PRIAL norms are shown in Table III-C. We note that
Y rprw offers the best improvement of the estimation over
the sample covariance matrix and is more robust for different
number of samples. In Figure 6 we show the structure of X
and X pprw (n = 25 samples) and note that RBLW estimator
preserves the structure of the true covariance 3.

(IIL.18)

TABLE I
PRIAL NORMS FOR THE ESTIMATORS FOR THE QG MODEL USING n = 25
AND n = 40 SAMPLES.

n ‘ 5(2,5,2Lw) ‘ 5(z,s,§RBLW) ‘ 5(2,S,§OAS)

25 26% 66% 62%
40 35% 64% 61%
TT20 40 60 80 100 120 140 ??1‘60
Fig. 6. True covariance matrix (top) and Rao-Blackwell Ledoit and Wolf

estimator (bottom) for the sample size n = 25.

D. Integrative Numerical Study
To perform our benchmarks, we consider two strategies:

e (Corr) : This strategy computes the forward dispatch
solution using scenarios that capture correlation. This
strategy assumes that the ISO has correct spatio-temporal
information.

e (Indep) : This strategy computes the forward dispatch
solution using scenarios that do not capture correlation. We
recall that the use of independent scenarios corresponds to
the case in which each player submits to the ISO a set of
scenarios created based on its own forecast, leaving the ISO
without information about the correlation between players.

For both cases, we define as the predicted cost as the dispatch
cost obtained from the solution of the corresponding dispatch
problem. We then fix the forward decisions to evaluate cost at
a new set of scenarios obtained by sampling the the distribution
capturing correlation. We denote this cost as the realized cost.

We devised the simulations to also reveal the effect of
dispatch cost and the number of scenarios used. For this we have
solved the dispatch model with S = {4, 8,16, 32,64, 128,256}
scenarios. Because the dispatch is a random variable, we com-
puted error bands shown in Figure 7. For this we generated 256
batches of S scenarios for each S = {4, 8, 16, 32, 64, 128, 256},
solved the ED model for each batch and computed the mean
and the standard deviation of the social surplus.

The sizes of the resulting optimization problems range from
14,635 decision variables and 12,884 constraints for S = 4
to 763,579 decision variables and 704,372 constraints for
S = 256. The stochastic dispatch problems have a well-known
“dual-block angular” structure that can be exploited to enable
fast solutions in parallel using our solver PIPS-IPM [5], [6], [7],
[8]. To compute the mean and standard deviation of the social
surplus for each S = {4, 8,16, 32, 64,128,256} we solve 256
instances in parallel, each instance using S parallel processes.
In these experiments we used “Intrepid” IBM BG/P and “Mira”
IBM BG/Q supercomputers of Argonne National Laboratory.
The Intrepid supercomputer has 40 racks with a total 40,960
nodes and a 3D torus high-performance interconnect; each BG/P
node has a 850 MHz quad-core PowerPC processor and 2 GB
of RAM. Mira is the replacement for Intrepid and consists of 48
racks, each of 1024 nodes, and a 5D torus interconnect. Each
BG/Q node has 16 PowerPC A2 cores operating at 1600 Mhz
and 16 GB of memory. In our simulations we have used up to
16, 384 nodes on each system (for the largest run corresponding
to S=256). On Mira, the total execution times for solving 256
batches in parallel are in between 6 minutes (for S = 4)
and 8 minutes (for S = 256). The slight increase in the
execution times with S are primarily caused by I/O overhead,
the optimization solution times remaining relatively constant (a
bit more than 5 minutes for S = 4 and almost 6 minutes for
S = 256).

From Figure 7 we can make the following observations:

o The (Indep) strategy yields a significant gap between the
predicted and the realized costs. Interestingly, the gap is
as large as 20,000 USD/hr. The gap result because the
(Indep) strategy fails at capturing the reality of atmospheric
conditions at the moment of dispatching.

e The (Corr) strategy correctly predicts the dispatch cost.
This can be observed by comparing the means.

o There is a positive social surplus gap between the (Corr)
and the (Indep) strategies of about 10,967 USD/hr or
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Mean and 95% confidence intervals for dispatch cost predicted with correlated and independent scenarios. We also show “realized” dispatch costs,

corresponding to costs obtained by implementing the predicted dispatch decisions under the correlated scenarions sampling scheme.

1.42%. This can add up to 100 million USD/yr. Further-
more, the gap does not close as the number of scenario
increases, being consistent with the analytical dispatch
model of Section II.

o The (Indep) and the (Corr) strategies exhibit different error
bands and the bands at significantly different rates. For
the (Corr) strategy, the error bands are small for 64 or
more scenarios. In particular, the standard deviation of the
dispatch cost is 0.45% and 0.36% when using 128 and 256
scenarios, respectively. This suggests that O(10?) scenarios
offer a good approximate social surplus even for a large
number of wind farms. The (Indep) strategy underestimates
the amount of scenarios needed.

IV. CONCLUSIONS AND FUTURE WORK

We have demonstrated that neglecting correlation between
multiple wind supply points can result in strong biases of
dispatch cost. Our conclusions are drawn from a detailed study
that incorporates high-resolution wind speed forecasts from
numerical weather prediction models, covariance estimation
techniques, and stochastic dispatch models.

APPENDIX

Lemma 1: E[X|X < d] = —0?¢(d) + u®(d).
Proof: By direct computation we have

E[X|X < d]

d
:/ x¢(x)dr =

d _ N2

_ o (z— >\ |"
__\/%exp(_ 20 >w

poo [ (x — p)?
+ 27r0/_ooexp(_ 202 )dw

= —o?¢(d) + u®(d).

We first show that c4(c) given by (IL7) is strictly increas-

ing. For this let p(z,0) = —(7‘2;‘5)2, therefore ¢(z,0) =
a\}ﬂ exp(p(z,c)). Observe that

d T —

dmzww,a)‘*gf( 02“), (A.19a)

(z — p)?

%p(amo) =+ g (A.19b)

d d

£¢($70’) ¢($70) : %p(l' U) (A19C)

d d

4o 0 o) =@, 0) o op(@,0) — — == exp(p(z, o))

2

:E;ﬂa¢@@_§m%w

o3

(A.19d)

The derivative of ¢ with respect to o can be computed as
follows:

i(I>(d o)

/ $(p(x,0)

/ 0))d
(A19d)/ (55;3/‘)2 - H(p(z, o)) x,f/ o(p(z,0)

- [ o (—%“)-Z“dx—ﬂdw
(A1%a) / (p(z,0))

(J; o) - TP — l<I>(d,a)
1% o

220 _ [m—w<< o) Tl — 2 8(d,0)
= otptmen =
+ 1 otwteonar - Lot
=L (p(d, o). (A.20)

a



Finally, by differentiating (II.7) and using (A.19d) and (A.20),
compute

d
do

which shows that cg4(o) is strictly increasing. Since o(p)

—cq(0) = (Pth — Pw) ((d - M)%‘I’(CL o)+ 20¢(x,d)

5 d
+o %¢(d, a)>
(d—p)?

~¢(d,0) + 20¢(d, o)

(d—p)?

(Ptn — Pw) (—

+ ~o(d, o) — oo(d, o)>

(A21)

U(pth _pw)¢(da U) > Oa

\/ 02 + 2po102 + 03 is also a strictly increasing function of p,
we conclude that ¢, is also strictly increasing function of the
correlation coefficient p.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
under Contract No. DE-AC02-06CH11357.

(1]

(2]

3

—

[4

=

[5

—_

[6

—_

[7

—

REFERENCES

YILUN CHEN, A. WIESEL, AND A.O. HERO, Shrinkage estimation of
high dimensional covariance matrices, in Acoustics, Speech and Signal
Processing, 2009. ICASSP 2009. IEEE International Conference on, 2009,
pp. 2937-2940.

E.M. CONSTANTINESCU, V.M. ZAVALA, M. ROCKLIN, SANGMIN LEE,
AND M. ANITESCU, A computational framework for uncertainty quantifi-
cation and stochastic optimization in unit commitment with wind power
generation, IEEE Transactions on Power Systems, 26 (2011), pp. 431-441.
EMIL M CONSTANTINESCU, VICTOR M ZAVALA, MATTHEW ROCKLIN,
SANGMIN LEE, AND MIHAI ANITESCU, A computational framework for
uncertainty quantification and stochastic optimization in unit commitment
with wind power generation, Power Systems, IEEE Transactions on, 26
(2011), pp. 431-441.

OLIVIER LEDOIT AND MICHAEL WOLF, A well-conditioned estimator for
large-dimensional covariance matrices, Journal of Multivariate Analysis,
88 (2004), pp. 365 — 411.

MILES LUBIN, COSMIN G. PETRA, AND MIHAI ANITESCU, The parallel
solution of dense saddle-point linear systems arising in stochastic pro-
gramming, Optimization Methods and Software, 27 (2012), pp. 845-864.
MILES LUBIN, COSMIN G. PETRA, MIHAI ANITESCU, AND VICTOR
ZAVALA, Scalable stochastic optimization of complex energy systems,
in Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 11, New York, USA,
2011, ACM, pp. 64:1-64:64.

COSMIN G. PETRA AND MIHAI ANITESCU, A preconditioning technique

Sfor Schur complement systems arising in stochastic optimization, Compu-

[8

—_—

[9]

[10]

[11]

[12]

[13]

tational Optimization and Applications, 52 (2012), pp. 315-344.
CosMIN G. PETRA, OLAF SCHENK, MILES LUBIN, AND KLAUS
GARTNER, An augmented incomplete factorization approach for comput-
ing the Schur complement in stochastic optimization, accepted to SIAM
Journal on Scientific Computing, (2014).

P. PINSON, H. MADSEN, H. A. NIELSEN, G. PAPAEFTHYMIOU, AND
B. KLCKL, From probabilistic forecasts to statistical scenarios of short-
term wind power production, Wind Energy, 12 (2009), pp. 51-62.
GEOFFREY PRITCHARD, GOLBON ZAKERI, AND ANDREW PHILPOTT, A
single-settlement, energy-only electric power market for unpredictable and
intermittent participants, Operations Research, 58 (2010), pp. 1210-1219.
, A single-settlement, energy-only electric power market for unpre-
dictable and intermittent participants, Operations Research, 58 (2010),
pp. 1210-1219.

PAVEL SAKOV AND PETER R. OKE, A deterministic formulation of the
ensemble kalman filter: an alternative to ensemble square root filters,
Tellus A, 60 (2008), pp. 361-371.

W.C. SKAMAROCK, J.B. KLEMP, J. DUDHIA, D.O. GILL, D.M.
BARKER, M.G. DUDA, X.-Y. HUANG, W. WANG, AND J.G. POWERS,
A description of the Advanced Research WRF version 3, Tech. Report
Tech Notes-475+ STR, NCAR, 2008.

[14]

[15]

[16]

(17]

J. SuMAILI, H. KEKO, V. MIRANDA, ZHI ZHOU, A. BOTTERUD, AND
JIANHUI WANG, Finding representative wind power scenarios and their
probabilities for stochastic models, in 16th International Conference on
Intelligent System Application to Power Systems, Sept 2011, pp. 1-6.

J. TASTU, P. PINSON, AND H. MADSEN, Space-time trajectories of wind
power generation: Parameterized precision matrices under a gaussian
copula approach, in Lecture Notes in Statistics: Modeling and Stochastic
Learning for Forecasting in High Dimension, in press, 2014.

M. WYTOCK AND J.Z. KOLTER, Large-scale probabilistic forecasting
in energy systems using sparse gaussian conditional random fields, in
2013 IEEE 52nd Annual Conference on Decision and Control, Dec 2013,
pp. 1019-1024.

V. M. ZAVALA, J. BIRGE, AND M. ANITESCU, A stochastic market
clearing formulation with consistent pricing properties, Under Review
(2014).



